Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Intermolecular $\mathrm{O} — \mathrm{H} \cdots \mathrm{O}$ hydrogen bonding in the three independent molecules of (2S)-3-(4-hydroxy-phenyl)-2-(1-oxoisoindolin-2-yl)propanoic acid 

Fiona Brady and John F. Gallagher*

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland Correspondence e-mail: john.gallagher@dcu.ie

Received 7 August 2000
Accepted 23 August 2000
The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$, derived from L-tyrosine, crystallizes with three independent molecules which differ in the conformation of the asymmetric unit: the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\text {ipso }}$ torsion angles are $-71.7(5),-63.6(6)$ and $-52.5(5)^{\circ}$, respectively. Deformations in the phenol ring hydroxy O-$\mathrm{C}-\mathrm{C}$ angles of 116.5 (4)/123.9 (4), 121.7 (5)/118.1 (4) and 122.4 (5)/118.6 (5) ${ }^{\circ}$, respectively, result from their respective intermolecular hydrogen-bonding environments. Intermolecular $\mathrm{O}_{\text {acid }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {indole }}, \mathrm{O}_{\text {phenol }}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H}_{\text {phenol }}$ and $\mathrm{O}_{\text {phenol }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {indole }}$ hydrogen bonds, with $\mathrm{O} \cdots \mathrm{O}$ distances in the range 2.607 (4)-2.809 (4) $\AA$, are present in combination with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions. The primary hydrogen-bonding systems assemble with graph sets $R_{3}^{3}(8)$ and $R_{3}^{2}(22)$.

## Comment

Phenol and related monosubstituted aromatic compounds have attracted considerable interest in gas-phase electron diffraction experiments and $a b$ initio calculations in order to probe bond-angle deformations arising from electronic effects due to the nature of the phenyl ring substituent (Portalone et al., 1992; Ramondo et al., 1995). These investigations facilitate comparison with microwave and solid-state studies, although the experimental geometries in the 'free' molecule and crystal structure usually differ due to solid-state intra- and intermolecular interactions. Phenol crystallizes with three independent molecules in the asymmetric unit and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form a helical array of approximate $3_{1}$ symmetry (Zavodnik et al., 1987). Many hydrocarbons containing a single OH substituent, e.g. menthol (Bombicz et al., 1999) and $5 \alpha$-dinosteran-29-ol (Brock et al., 1994), crystallize with more than one molecule in the asymmetric unit or in space groups with three- or fourfold axes in the absence of other significant interactions.

Amino acid derivatives are a major class of chiral compounds with a wide range of applications in medicinal
chemistry. Tyrosine, $\mathrm{H}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{C}^{*}(R) \mathrm{COOH}$ ( $R$ is 4-hydroxybenzyl) and related compounds (Byrkjedal et al., 1974; Dahaoui et al., 1999) have attracted considerable interest in biological studies (Kawai et al., 1999). The title compound, (I), which contains the isoindolinyl group (Allin et al., 1996; McNab et al., 1997; Takahashi \& Hatanaka, 1997) is synthesized from l-tyrosine and forms part of a study of the hydrogen-bonding interactions in a phthalimidine series (Brady et al., 1998; Gallagher \& Murphy, 1999; Gallagher \& Brady, 2000; Gallagher et al., 2000).

(I)

Compound (I) crystallizes in space group $P 2_{1} 2_{1} 2_{1}$ (No. 19) with three independent molecules, $A, B$ and $C$, in the asymmetric unit which differ in conformation but retain the same configuration $(S)$ at the $(\mathrm{H}) \mathrm{C}^{*}(R) \mathrm{COOH}$ chiral centre. The absolute structure can be deduced from the known absolute configuration of L-tyrosine used in the synthesis. Views of the three independent molecules, with the atomic numbering schemes, are given in Fig. 1 and selected dimensions are in Table 1.

The r.m.s. deviations for the superposition of the non-H atoms of any pair of molecules in (I) using PLATON (Spek, 1998) are 0.28 ( $A / B$ pair), 1.05 ( $A / C$ pair) and $0.56 \AA(B / C$ pair). Crystal structures with several molecules present in the asymmetric unit are relatively common (Gallagher et al., 1998). There are ca 45 molecules in the Cambridge Structural Database (Allen \& Kennard, 1993) with $Z=12$ or three molecules in the asymmetric unit in space group $P 2_{1} 2_{1} 2_{1}$, of which $N$-acetyl-L-leucine-L-tyrosine methyl ester is a relevant example (Karle \& Flippen-Anderson, 1989).

The bond lengths and angles in the five-membered rings of the three independent molecules of (I) are similar to those reported previously (McNab et al., 1997; Kundu et al., 1999; Mukherjee et al., 2000; Gallagher \& Brady, 2000) and in agreement with expected values (Orpen et al., 1994). The angles between the five- and six-membered rings of the isoindole systems are 0.96 (12), 2.87 (8) and 1.01 (7) ${ }^{\circ}$ in molecules $A, B$ and $C$, respectively, and the maximum deviation from planarity for an atom in either ring plane is 0.021 (3) $\AA$ for $\mathrm{N} 1 A$ in $A, 0.021$ (3) $\AA$ for $\mathrm{C} 3 B$ in $B$ and 0.015 (3) $\AA$ for $\mathrm{C} 10 C$ in $C$. The carbonyl O3n atom is 0.067 (7) $\AA$ from the $\mathrm{C}_{4} \mathrm{~N}$ ring plane in $A, 0.113$ (7) $\AA$ in $B$ and 0.020 (7) $\AA$ in $C(n$ is $A, B$ or $C)$. Pyramidalization occurs, with N1n 0.118 (4), 0.121 (5) and 0.070 (5) A from the $\mathrm{C} 2 n / \mathrm{C} 3 n / \mathrm{C} 10 n$ planes, and these values are comparable with those of 0.129 (2) $\AA$ in a DLphenylalanine derivative (Brady et al., 1998) and 0.079 (2) Å in a DL-meta-tyrosine derivative (Gallagher \& Murphy, 1999). The carboxylic acid group $\mathrm{CCO}_{2}$ is almost perpendicular to the $\mathrm{C}_{4} \mathrm{~N}$ ring plane [79.18 (18), 83.3 (2) and $83.0(2)^{\circ}$ in $A, B$ and $C$, respectively] and the phenyl ring [79.14 (13), 68.39 (14) and $82.5(2)^{\circ}$ in $A, B$ and $C$, respectively]. Geometrical
differences for $\mathrm{O} 2 n-\mathrm{C} 1 n-\mathrm{C} 2 n-\mathrm{C} 21 n$, with torsion angles of 132.3 (5), 113.0 (6) and 128.3 (6) ${ }^{\circ}$, respectively, are due to the distinct local environments of $A, B$ and $C$.

Intermolecular hydrogen bonding involving the phenol residues can be evidenced by analysis of the $\mathrm{O} 4 n-\mathrm{C} 14 n-$


Figure 1
Views of molecules $A$ (top), $B$ and $C$ (bottom) of (I) with the atomic numbering schemes. Displacement ellipsoids are drawn at the 30\% probability level. Suffixes have been omitted from the C-atom labels for clarity.
$\mathrm{C} 13 n / \mathrm{O} 4 n-\mathrm{C} 14 n-\mathrm{C} 15 n$ bond angles, which vary as 116.5 (4)/ 123.9 (4), 121.7 (5)/118.1 (4) and 122.4 (5)/118.6 (5) ${ }^{\circ}$ in $A, B$ and $C$, respectively, with the larger angles cisoid to their $\mathrm{O}-\mathrm{H}$ bonds, reflecting the different demands of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding at each $\mathrm{O}-\mathrm{H}$ site (the $\mathrm{H} 4 n-\mathrm{O} 4 n-$ $\mathrm{C} 14 n-\mathrm{C} 13 n$ angles are 169,8 and $20^{\circ}$ ). This deformation is also present in the meta-tyrosine derivative, where a $5^{\circ}$ difference in the $\mathrm{O}-\mathrm{C}-\mathrm{C}_{\text {ortho }}$ angles [117.2 (2)/122.2 (2) ${ }^{\circ}$ ] results from strong intermolecular hydrogen bonding [the $\mathrm{C}-$ C-C angle is $118.9(2)^{\circ}$; Gallagher \& Murphy, 1999]. In related alkyl -OH derivatives, the donor/acceptor ability of the alkyl -OH group in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonding can be noted from the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle in the chiral and racemic threonine forms $\left[110.5(2)\right.$ and $105.52(11)^{\circ}$, respectively; Gallagher et al., 2000]. In tris(4-methoxyphenyl)methanol, $\mathrm{MeO}-\mathrm{C}-\mathrm{C}_{\text {ortho }}$ angles of 115.1 (3)/ 125.5 (3) ${ }^{\circ}$ transoid/cisoid to a methoxy group are distinct (Ferguson et al., 1996) and similar in magnitude to the values of $116 / 124^{\circ}$ reported in the electron diffraction study of anisole, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$ (Seip \& Seip, 1973).

The hydrogen bonding in (I) consists primarily of O $\mathrm{H} \cdots \mathrm{O}$ interactions, with some $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ interactions, as detailed in Table 2. The intermolecular interactions are dominated by the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with all six $\mathrm{O}-\mathrm{H}$ groups participating; $\mathrm{O} \cdots \mathrm{O}$ distances range from $2.607(4)(\mathrm{O} 4 B \cdots \mathrm{O} 3 C)$ to $2.809(4) \AA(\mathrm{O} 4 C \cdots \mathrm{O} 3 B)$. The crystal structure can be considered as a molecular association of $B$ and $C$ through two $\mathrm{O}_{\text {phenol }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {indole }}$ hydrogen bonds to form a dimer, with graph set $R_{2}^{2}(22)$ (Fig. 2). Mole-


Figure 2
A view of the intermolecular interactions in (I), showing the interactionintense $R_{3}^{3}(8)$ motif involving molecules $A, B$ and $C$.
cule $A$ interacts with this $B / C$ dimer through an $\mathrm{O} 4 A-$ $\mathrm{H} 4 A \cdots \mathrm{O} 4 B-\mathrm{H} 4 C \cdots \mathrm{O} 3 C$ relay $[\mathrm{O} 4 A \cdots \mathrm{O} 4 B 2.753$ (5) $\AA$ ], in combination with a $\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{O} 3 C$ interaction [C15A $\cdots$ O3C 3.425 (6) Å], forming a hydrogen-bonded ring with graph set $R_{3}^{3}(8)$. The phenolic $\mathrm{O} 4 A-\mathrm{H} 4 A$ group acts as a weak acceptor $\left[\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 4 A^{\mathrm{ii}}\right.$, with $\mathrm{C} 12 B \cdots \mathrm{O} 4 A^{\mathrm{ii}}$ 3.473 (5) Å; symmetry code: (ii) $\left.x-\frac{1}{2}, \frac{1}{2}-y, 1-z\right]$ and as a donor in the $\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 4 B-\mathrm{H} 4 C \cdots \mathrm{O} 3 C$ relay of interactions. Significant bending of the para-disubstituted atoms from the phenylene ring plane occurs in $A$, with $\mathrm{C} 21 A$ displaced from and cisoid to the aromatic plane by 0.163 (7) $\AA$ and $\mathrm{O} 4 A$ by $0.036(7) \AA$. The $\mathrm{C} 21 A-\mathrm{C} 11 A \cdots \mathrm{C} 14 A$ and $\mathrm{C} 11 A \cdots \mathrm{C} 14 A-\mathrm{O} 4 A$ angles are bent by 174.1 (4) and $176.4(3)^{\circ}$, respectively. This distortion about the $\mathrm{C}_{6} \mathrm{H}_{4}$ ring plane arises from the consequences of hydrogen bonding in the interaction-intense $R_{3}^{3}(8)$ motif as $A$ maximizes its association with the $B / C$ dimer.

The carbonyl O3A atom is an acceptor for two carboxylic acid $\mathrm{O} 1 A-\mathrm{H} 1 A$ and $\mathrm{O} 1 B-\mathrm{H} 1 B$ hydrogen-bond donors, $\mathrm{O} 3 B$ is an acceptor of a carboxylic acid $\mathrm{O} 1 C-\mathrm{H} 1 C$ and a phenolic $\mathrm{O} 4 C-\mathrm{H} 4 C$ donor, while O3C interacts through one short phenolic $\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 3 C$ hydrogen bond $[\mathrm{O} 4 B \cdots \mathrm{O} 3 C$ 2.607 (3) $\AA$ ] and in combination with the $\mathrm{C} 15 A-$ $\mathrm{H} 15 A \cdots \mathrm{O} 3 C$ interaction. The carboxylate $\mathrm{O} 2 n$ atoms participate in weak intermolecular hydrogen bonding, the most important contact being $\mathrm{C} 15 \mathrm{C}-\mathrm{H} 15 \mathrm{C} \cdots \mathrm{O} 2 B^{\mathrm{v}} \quad[\mathrm{C} \cdots \mathrm{O}$ 3.569 (7) Å; symmetry code: (v) $\left.-x, y-\frac{1}{2}, \frac{1}{2}-z\right]$. This weak participation of the carboxylate $\mathrm{O} 2 n$ atoms in hydrogen bonding also occurs in the l -threonine derivative and contrasts with the DL-threonine form, where centrosymmetric carboxylic $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ C interactions assemble with graph set $R_{2}^{2}(8)$ (Gallagher et al., 2000). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {arene }}$ contacts complete the three-dimensional hydrogen bonding.

Crystal engineering studies continue to rely on stronger hydrogen bonds for the design and synthesis of three-dimensional structures (Aakeröy et al., 1999). However, a fundamental understanding of the control and exploitation of $X-$ $\mathrm{H} \cdots Y$ and $X-Y \cdots \pi_{\text {arene }}$ interactions ( $X=\mathrm{C}, \mathrm{N}$ or $\mathrm{O} ; Y=\mathrm{N}$ or O) remains an elusive goal. The conformational polymorphism of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, a hexamorphic crystal system, with emphasis on the relative thermodynamic stability of the six polymorphs, has been described recently by Yu et al. (2000), serving to underline the difficulty in predicting crystal structures even in small molecules.

## Experimental

The title compound was prepared by the overnight reaction of L-tyrosine and $o$-phthalaldehyde in refluxing acetonitrile (Allin et al., 1996). Filtration of the hot solution and subsequent slow cooling of the filtrate allowed the isolation of large colourless crystals of (I) [m.p. 503-505 K (uncorrected)]. IR (KBr, $\left.v_{\mathrm{OH}}, \mathrm{cm}^{-1}\right): 3339$; ( $v_{\mathrm{C}=\mathrm{O}}$, $\mathrm{cm}^{-1}$ ): $1760,1745,1689 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \delta, d_{6}$-DMSO, p.p.m.): $3.06\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.43\left(b r, s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.02(m, 1 \mathrm{H}, \mathrm{CH}), 6.59-7.02$ ( $m, 4 \mathrm{H}$, para $-\mathrm{C}_{6} \mathrm{H}_{4}$ ), 7.35-7.39, 7.44-7.48, 7.49-7.55, 7.56-7.58 ( $m, 4 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 9.20(s, 1 \mathrm{H}, \mathrm{OH}), 10.48(s, 1 \mathrm{H}, \mathrm{OH})$.

## Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=297.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.7589$ (9) A
$b=17.8696$ (17) $\AA$
$c=22.6670(18) \AA$
$V=4357.9(7) \AA^{3}$
$Z=12$
$D_{x}=1.359 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
8116 measured reflections
4272 independent reflections
2782 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.116$
$S=1.02$
4272 reflections
602 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9.6-18.6^{\circ}$
$\mu=0.098 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block, colourless
$0.36 \times 0.36 \times 0.28 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=0 \rightarrow 21 \\
& l=0 \rightarrow 26
\end{aligned}
$$

3 standard reflections frequency: 120 min intensity decay: $<1 \%$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.063 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18$ e $\AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0013 (3)

All atoms bound to C atoms were treated as riding, with SHELXL97 (Sheldrick, 1997) defaults for $\mathrm{C}-\mathrm{H}$ distances and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the remainder. The H atoms bound to O atoms were located from a difference Fourier map and subsequently treated as rigid rotating groups with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Examination of the structure of (I) with PLATON (Spek, 1998) showed that there were no solventaccessible voids in the crystal lattice. A stereoview of the three molecules in the asymmetric unit of the unit cell has been deposited

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{O} 1 A-\mathrm{C} 1 A$ | 1.321 (5) | O3B-C3B | 1.250 (5) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 2 A-\mathrm{C} 1 A$ | 1.187 (5) | $\mathrm{O} 4 B-\mathrm{C} 14 B$ | 1.382 (5) |
| $\mathrm{O} 3 A-\mathrm{C} 3 A$ | 1.245 (5) | O1C-C1C | 1.303 (5) |
| $\mathrm{O} 4 A-\mathrm{C} 14 A$ | 1.372 (5) | $\mathrm{O} 2 C-\mathrm{C} 1 C$ | 1.174 (5) |
| $\mathrm{O} 1 B-\mathrm{C} 1 B$ | 1.316 (5) | $\mathrm{O} 3 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$ | 1.239 (5) |
| $\mathrm{O} 2 B-\mathrm{C} 1 B$ | 1.187 (6) | $\mathrm{O} 4 C-\mathrm{C} 14 C$ | 1.370 (6) |
| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{O} 2 A$ | 124.2 (5) | $\mathrm{O} 3 B-\mathrm{C} 3 B-\mathrm{C} 4 B$ | 129.3 (4) |
| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$ | 111.1 (4) | $\mathrm{O} 4 B-\mathrm{C} 14 B-\mathrm{C} 13 B$ | 121.7 (5) |
| $\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A$ | 124.6 (4) | $\mathrm{O} 4 B-\mathrm{C} 14 B-\mathrm{C} 15 B$ | 118.1 (4) |
| $\mathrm{O} 3 A-\mathrm{C} 3 A-\mathrm{N} 1 A$ | 123.7 (4) | $\mathrm{C} 13 B-\mathrm{C} 14 B-\mathrm{C} 15 B$ | 120.2 (5) |
| $\mathrm{O} 3 A-\mathrm{C} 3 A-\mathrm{C} 4 A$ | 128.3 (4) | $\mathrm{O} 1 C-\mathrm{C} 1 C-\mathrm{O} 2 C$ | 122.6 (5) |
| $\mathrm{O} 4 A-\mathrm{C} 14 A-\mathrm{C} 13 A$ | 116.5 (4) | $\mathrm{O} 1 C-\mathrm{C} 1 C-\mathrm{C} 2 C$ | 111.9 (4) |
| $\mathrm{O} 4 A-\mathrm{C} 14 A-\mathrm{C} 15 A$ | 123.9 (4) | $\mathrm{O} 2 C-\mathrm{C} 1 C-\mathrm{C} 2 C$ | 125.6 (4) |
| $\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{C} 15 A$ | 119.6 (5) | $\mathrm{O} 3 C-\mathrm{C} 3 C-\mathrm{N} 1 C$ | 123.6 (4) |
| $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{O} 2 B$ | 123.9 (5) | $\mathrm{O} 3 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}$ | 129.8 (4) |
| $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B$ | 110.9 (5) | $\mathrm{O} 4 C-\mathrm{C} 14 C-\mathrm{C} 13 C$ | 122.4 (5) |
| $\mathrm{O} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B$ | 125.1 (5) | $\mathrm{O} 4 \mathrm{C}-\mathrm{C} 14 \mathrm{C}-\mathrm{C} 15 \mathrm{C}$ | 118.6 (5) |
| $\mathrm{O} 3 B-\mathrm{C} 3 B-\mathrm{N} 1 B$ | 123.2 (4) | $\mathrm{C} 13 \mathrm{C}-\mathrm{C} 14 \mathrm{C}-\mathrm{C} 15 \mathrm{C}$ | 119.0 (5) |
| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 21 A$ | -49.8 (5) | $\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 21 B-\mathrm{C} 11 B$ | -63.6 (6) |
| $\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 21 A$ | 132.3 (5) | $\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 21 B-\mathrm{C} 11 B$ | 172.4 (4) |
| $\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 21 A-\mathrm{C} 11 A$ | -71.7 (5) | $\mathrm{O} 1 C-\mathrm{C} 1 C-\mathrm{C} 2 C-\mathrm{C} 21 C$ | -53.4 (6) |
| $\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 21 A-\mathrm{C} 11 A$ | 162.8 (4) | $\mathrm{O} 2 C-\mathrm{C} 1 C-\mathrm{C} 2 C-\mathrm{C} 21 C$ | 128.3 (6) |
| $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 21 B$ | -65.5 (5) | $\mathrm{N} 1 C-\mathrm{C} 2 C-\mathrm{C} 21 C-\mathrm{C} 11 C$ | -52.5 (5) |
| $\mathrm{O} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 21 B$ | 113.0 (6) | $\mathrm{C} 1 C-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 21 C-\mathrm{C} 11 C$ | -177.4 (4) |

Table 2
Hydrogen-bonding geometry ( $\AA,{ }^{\circ}$ ).
$C g 1$ is the centroid of the $\mathrm{C} 11 C-\mathrm{C} 16 C$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 3 A^{\mathrm{i}}$ | 0.82 | 1.84 | 2.652 (4) | 169 |
| $\mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 A^{\text {ii }}$ | 0.82 | 2.00 | 2.716 (5) | 147 |
| $\mathrm{O} 1 C-\mathrm{H} 1 C \cdots \mathrm{O} 3 B^{\text {iii }}$ | 0.82 | 1.89 | 2.675 (5) | 159 |
| $\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 4 B$ | 0.82 | 1.94 | 2.753 (5) | 170 |
| $\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 3 C$ | 0.82 | 1.85 | 2.607 (4) | 152 |
| $\mathrm{O} 4 C-\mathrm{H} 4 C \cdots \mathrm{O} 3 B$ | 0.82 | 2.00 | 2.809 (4) | 171 |
| $\mathrm{C} 10 \mathrm{C}-\mathrm{H} 10 E \cdots \mathrm{O} 1 A^{\text {iv }}$ | 0.97 | 2.50 | 3.284 (5) | 138 |
| $\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{O} 3 \mathrm{C}$ | 0.93 | 2.54 | 3.425 (6) | 160 |
| $\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 4 A^{\text {ii }}$ | 0.93 | 2.66 | 3.473 (5) | 147 |
| $\mathrm{C} 15 \mathrm{C}-\mathrm{H} 15 C \cdots \mathrm{O} 2 B^{\text {v }}$ | 0.93 | 2.65 | 3.569 (7) | 173 |
| $\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{Cg} 1^{\mathrm{vi}}$ | 0.93 | 2.86 | 3.716 (5) | 153 |

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 2-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (iii) $-\frac{1}{2}-x,-y, \frac{1}{2}+z$; (iv) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (v) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vi) $\frac{1}{2}-x,-y, \frac{1}{2}+z$.
as a supplementary diagram. Refinement of the full data set with all Friedel reflections not unexpectedly gave an inconsistent Flack (1983) parameter [0.6 (16)] for this light-atom structure; for the final refinement, the Friedel reflections were merged.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: DATRD2 in NRCVAX 96 (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 and SHELXL97; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEX (McArdle, 1995) and PLATON; software used to prepare material for publication: NRCVAX96, SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks Dublin City University and Forbairt (International Collaboration grant IC/98/021) for funding a research visit to the University of Guelph (July to August, 1998), and especially Professor George Ferguson for the use of his diffractometer and computer system. The purchase of a $P 4$ diffractometer in 1999 by Dublin City University is also appreciated.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1414). An additional figure is also available. Services for accessing these data are described at the back of the journal.

## References

Aakeröy, C. B., Beatty, A. M. \& Leinen, D. S. (1999). Angew. Chem. Int. Ed. Engl. 38, 1815-1819.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allin, S. M., Hodkinson, C. C. \& Taj, N. (1996). Synlett, pp. 781-782.
Bombicz, P., Buschmann, J., Luger, P., Dung, N. X. \& Nam, C. B. (1999). Z. Kristallogr. 214, 420-423.
Brady, F., Gallagher, J. F. \& Kenny, P. T. M. (1998). Acta Cryst. C54, 1523-1525.
Brock, C. P., Stoilov, I. \& Watt, D. S. (1994). Acta Cryst. C50, 434-438.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Byrkjedal, A., Mostad, A. \& Rømming, C. (1974). Acta Chem. Scand. Ser. B, 28, 750-756.
Dahaoui, S., Jelsch, C., Howard, J. A. K. \& Lecomte, C. (1999). Acta Cryst. B55, 226-230.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Ferguson, G., Glidewell, C. \& Patterson, I. L. J. (1996). Acta Cryst. C52, 420423.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gallagher, J. F. \& Brady, F. (2000). Acta Cryst. C56, 619-622.
Gallagher, J. F., Brady, F. \& Murphy, C. (2000). Acta Cryst. C56, 365-368.
Gallagher, J. F., Briody, J. M. \& Cantwell, B. P. (1998). Acta Cryst. C54, 13311335.

Gallagher, J. F. \& Murphy, C. (1999). Acta Cryst. C55, 2167-2169.
Karle, I. L. \& Flippen-Anderson, J. L. (1989). Acta Cryst. C45, 791-795.
Kawai, K., Flores, L. G. II, Nakagawa, M., Shikano, N., Jinnouchi, S., Tamura, S. \& Kubodera, A. (1999). Nucl. Med. Commun. 20, 153-157.

Kundu, N. G., Khan, M. W., Guha, S. \& Mukherjee, A. K. (1999). Acta Cryst. C55, 239-241.
McArdle, P. (1995). J. Appl. Cryst. 28, 65-65.
McNab, H., Parsons, S. \& Shannon, D. A. (1997). Acta Cryst. C53, 1098-1099.
Mukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. \& Helliwell, M. (2000). Acta Cryst. C56, 85-87.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, pp. 769-774. Weinheim: VCH.
Portalone, G., Shultz, G., Domenicano, A. \& Hargittai, I. (1992). Chem. Phys. Lett. 197, 482-488.
Ramondo, F., Bencivenni, L., Portalone, G. \& Domenicano, A. (1995). Struct. Chem. 6, 37-45.
Seip, H. M. \& Seip, R. (1973). Acta Chem. Scand. Ser. B, 27, 4024-4027.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. University of Utrecht, The Netherlands.
Takahashi, I. \& Hatanaka, M. (1997). Heterocycles, 45, 2475-2499.
Yu, L., Stephenson, G. A., Mitchell, C. A., Bunnell, C. A., Snorek, S. V., Bowyer, J. J., Borchardt, T. B., Stowell, J. G. \& Bryn, S. R. (2000). J. Am. Chem. Soc. 122, 585-591.
Zavodnik, V. E., Bel'skii, V. K. \& Zorkii, P. M. (1987). Zh. Strukt. Khim. 28, 175-177.

